Short for Multiprotocol Label Switching, an IETF initiative that integrates Layer 2 information about network links (bandwidth, latency, utilization) into Layer 3 (IP) within a particular autonomous system--or ISP--in order to simplify and improve IP-packet exchange.
MPLS is a packet-forwarding technology which uses labels to make data forwarding decisions. MPLS provides a mechanism for forwarding packets for any network protocol. It was originally developed in the late 1990s to provide faster packet forwarding for IP routers (see RFC 3031). Since then its capabilities have expanded massively, for example to support service creation (VPNs), traffic engineering, network convergence, and increased resiliency.
MPLS works by tagging the traffic, in this example packets, with an identifier (a label) to distinguish the LSPs. When a packet is received, the router uses this label (and sometimes also the link over which it was received) to identify the LSP. It then looks up the LSP in its own forwarding table to determine the best link over which to forward the packet, and the label to use on this next hop.
MPLS plays a major role in keeping the networks of big businesses running smoothly today. The labeling process involves setting the criteria for information retrieval, sometimes determined by an IP address. The data is then directed through routers that have been pre-determined by the label switching.
MPLS network requirements
The following elements must exist in the network to be able to run MPLS
- A layer 3 routing protocol (IS-IS, OSPF, EIGRP or RIP); preferably IS-IS or OSPF for Traffic engineering.
- Label distribution protocol (RSVP, LDP or BGP).
- Network capable of handling MPLS traffic.
MPLS Benefits:
- BGP free core in the service provider.
- MPLS Applications like MPLS VPN and Traffic Engineering.
- Having unified network in the service provider as you can provide IP, L3 VPN or L2 VPN over the same network.
- Since a packet is assigned to a FEC when it enters the network, information that cannot be gleaned from the network layer header, can be used for FEC assignment. For example, classification of packets based on the source of the packets.
- Packets can be assigned a priority label, making Frame Relay and ATM-like quality-of-service guarantees possible. This function relates to the CoS field.
- The considerations that determine how a packet is assigned to a FEC can become ever more and more complicated, without any impact at all on the routers that merely forward labeled packets.
- Packet payloads are not examined by the forwarding routers, allowing for different levels of traffic encryption and the transport of multiple protocols.
- In MPLS, a packet can be forced to follow an explicit route rather than the route chosen by normal dynamic algorithm as the packet travels through the network. This may be done to support traffic engineering, as a matter of policy or to support a given QoS.
Virtual Private Network (VPN)
A VPN is a shared network where private data is segmented from other traffic so that only the intended recipient has access. The term VPN was originally used to describe a secure connection over the Internet.
A key aspect of data security is that the data flowing across the network is protected by encryption technologies. Private networks lack data security, which can allow data attackers to tap directly into the network and read the data. IPSec-based VPNs use encryption to provide data security, which increases the network’s resistance to data tampering or theft. VPNs are used for:
• Intranets: Intranets connect an organization’s locations. These locations range from the headquarters offices, to branch offices, to a remote employee’s home. Often this connectivity is used for e-mail and for sharing applications and files. While Frame Relay, ATM, and MPLS accomplish these tasks, the shortcomings of each limits connectivity. The cost of connecting home users is also very expensive compared to Internet-access technologies, such as DSL or cable. Because of this, organizations are moving their networks to the Internet, which is inexpensive, and using IPSec to create these networks.
• Remote Access: Remote access enables telecommuters and mobile workers to access e-mail and business applications. A dial-up connection to an organization’s modem pool is one method of access for remote workers, but it is expensive because the organization must pay the associated long distance telephone and service costs. Remote access VPNs greatly reduce expenses by enabling mobile workers to dial a local Internet connection and then set up a secure IPSec-based VPN communications to their organization.
• Extranets: Extranets are secure connections between two or more organizations. Common uses for extranets include supply-chain management, development partnerships, and subscription services. These undertakings can be difficult using legacy network technologies due to connection costs, time delays, and access availability. IPSec-based VPNs are ideal for extranet connections. IPSec-capable devices can be quickly and inexpensively installed on existing Internet connections.
MultiProtocol Label Switching (MPLS) Virtual Private Network (VPN)
MPLS VPN is a data-carrying mechanism which operates at a layer that is generally considered to lie between traditional definitions of Layer 2 (data link layer) and Layer 3 (network layer), and thus is often referred to as a "Layer 2.5" protocol. MPLS offers a great opportunity for companies wanting to expand their support to end users in different countries. MPLS allows the convergence of corporate applications with high quality of service (QoS) to configure Intranet/Extranet and remote access. MPLS based solutions provide extra value by connecting remote corporate sites whose applications are critical and require high QoS.
International MPLS VPN for business helps your company connect all of its offices anywhere in the world securely,without having to invest in costly infrastructures thanks to its robust network aided with MPLS technology. The service creates a Virtual Private Network connecting all of the company's offices, which provides a high quality multimedia solution (data, image and voice) easily adaptable to your growing needs. As an added value, MPLS simplify the evolution of Extranet environments where customers and providers would be able to work integrated with your company in a unique workplace. MPLS forms the basis for cost-efficient, highly reliable, multi-service IP networks. With MPLS, enterprises increase bandwidth efficiency and scalability, reduce operational and management expense and deliver reliable service.
Get a complete networking solution that provides secure access and promotes network flexibility. Connect multiple locations while converging voice, video, and data onto a single IP-based network. With Connet (MPLS VPN for private network, you'll have the flexibility to: Enable voice, data and other real-time, bandwidth-demanding applications Support a mobile sales force with wireless integration Simplify network management and reduce operating costs Your business requires a solution that has proven quality and reliability. The Connet network meets Cisco’s standards for running converged services such as voice, video, and data. MPLS VPN for private network allows you to take advantage of seamless connectivity and business continuity anywhere, at anytime, on any device.
Cisco MPLS VPN
Cisco IOS Multiprotocol Label Switching (MPLS) enables Enterprises and Service Providers to build next-generation intelligent networks that deliver a wide variety of advanced, value-added services over a single infrastructure. This economical solution can be integrated seamlessly over any existing infrastructure, such as IP, Frame Relay, ATM, or Ethernet. Subscribers with differing access links can be aggregated on an MPLS edge without changing their current environments, as MPLS is independent of access technologies.
Integration of MPLS application components, including Layer 3 VPNs, Layer 2 VPNs, Traffic Engineering, QoS, GMPLS, and IPV6 enable the development of highly efficient, scalable, and secure networks that guarantee Service Level Agreements.
Cisco IOS MPLS delivers highly scalable, differentiated, end-to-end IP services with simple configuration, management, and provisioning for providers and subscribers. A wide range of platforms support this solution, which is essential for both Service Provider and Enterprise networks.
more from Wikipedia http://en.wikipedia.org/wiki/Multiprotocol_Label_Switching
more from Youtubehttp://www.youtube.com/watch?v=H7KQcNRgGEk